
 Absorption cross section in warped AdS3 black hole revisited

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP09(2009)102

(http://iopscience.iop.org/1126-6708/2009/09/102)

Download details:

IP Address: 80.92.225.132

The article was downloaded on 01/04/2010 at 13:41

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/09
http://iopscience.iop.org/1126-6708/2009/09/102/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
0
9
(
2
0
0
9
)
1
0
2

Published by IOP Publishing for SISSA

Received: August 3, 2009

Accepted: September 3, 2009

Published: September 23, 2009

Absorption cross section in warped AdS3 black hole

revisited

Hsien-Chung Kaoa and Wen-Yu Wenb

aDepartment of Physics, National Taiwan Normal University,

Taipei 116, Taiwan
bDepartment of Physics and Center for Theoretical Sciences &

Leung Center for Cosmology and Particle Astrophysics, National Taiwan University,

Taipei 106, Taiwan

E-mail: hckao@ntnu.edu.tw, steve.wen@gmail.com

Abstract: We investigate the absorption cross section for minimal-coupled scalars in the

warped AdS3 black hole. According to our calculation, the cross section reduces to the

horizon area in the low energy limit as usually expected in contrast to what was previously

found. We also calculate the greybody factor and find that the effective temperatures

for the two chiral CFT’s are consistent with that derived from the quasinormal modes.

Observing the conjectured warped AdS/CFT correspondence, we suspect that a specific

sector of the CFT operators with the desired conformal dimension could be responsible for

the peculiar thermal behaviour of the warped AdS3 black hole.

Keywords: AdS-CFT Correspondence, Black Holes

ArXiv ePrint: 0907.5555

c© SISSA 2009 doi:10.1088/1126-6708/2009/09/102

mailto:hckao@ntnu.edu.tw
mailto:steve.wen@gmail.com
http://arxiv.org/abs/0907.5555
http://dx.doi.org/10.1088/1126-6708/2009/09/102


J
H
E
P
0
9
(
2
0
0
9
)
1
0
2

Contents

1 Introduction and summary 1

2 Scalar field in warped AdS3 black hole 3

3 Tortoise coordinate and effective potential 4

4 Revisit absorption cross section 5

5 Greybody factor 7

6 Effective CFT description 8

7 Superradiant modes 10

A Warped AdS/CFT correspondence 10

A.1 Warped AdS calculation 10

A.2 Group theory calculation 12

A.3 Correlator in Poincarè coordinate 13

1 Introduction and summary

It has been proved to be universal that for all spherically symmetric black holes the low

energy cross section for massless minimally coupled scalars is always equal to the area of

the horizon [1]. Furthermore, if the energy dependence is retained, the greybody factor or

decay rate can also be obtained from the corresponding conformal field theory of the black

hole [2–8]. Making use of the greybody factor, we can correctly reproduced the Bekenstein-

Hawking entropy of the black hole. Recently, a black hole solution in the topological

massive gravity (TMG) with a negative cosmological constant was constructed [9]. It was

soon realized that the black hole can be viewed as discrete quotients of the warped AdS3

spacetime [10] just like the BTZ black hole as discrete quotients of the AdS3. Following

the conventions in [10], the metric of the warped AdS3 black hole is given by

ds2 = −N2(r)dt2 + ℓ2R2(r)[dφ + Nφ(r)dt]2 +
ℓ4dr2

4R2(r)N2(r)
, (1.1)

with R2(r) ≡ r

4

(

3(ν2 − 1)r + (ν2 + 3)(r+ + r−) − 4ν
√

r+r−(ν2 + 3)
)

,

N2(r) ≡ ℓ2(ν2 + 3)(r − r+)(r − r−)

4R2
,

Nφ(r) ≡ 2νr −
√

r+r−(ν2 + 3)

2R2
,

– 1 –
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and the horizon area

AH = π
{

2νr+ −
√

r+r−(ν2 + 3)
}

. (1.2)

It is known that when ν = 1, it reduces to the BTZ black hole case. It was conjectured

in [10] that this background has a holographic description in terms of two-dimensional

conformal field theory with uneven temperatures in the left and right sectors, given by

T−1
H =

4πν

ν2 + 3

TL + TR

TR
,

TL =
ν2 + 3

8π

(

r+ + r− −
√

r+r−(ν2 + 3)

ν

)

,

TR =
ν2 + 3

8π
(r+ − r−). (1.3)

The corresponding central charges are

cL =
ℓ

G

4ν

ν2 + 3
, cR =

ℓ

G

5ν2 + 3

ν(ν2 + 3)
. (1.4)

There have been several discussions on the thermodynamical properties of this black hole.

Among them, we remark some unusual features: Firstly, a computation of the low energy

absorption cross section was carried out in [11] and to our surprise it did not reduce to

the horizon area even in the BTZ limit.1 This result seems to be in contradiction with

an earlier statement in [1] since a U(1) isometry is still preserved in the warped geometry,

though the area has been rescaled by deformation. Secondly, the quasinormal modes of

this background were discussed in [13] and their dispersion relation was shown no longer

linear in contrast to what is expected from the usual AdS/CFT correspondence. When

ν > 1, a ω2 term is included in the definition of the conformal dimension of the operator

which is coupled to the bulk scalar field thanks to the deformation. It was argued in

the conclusion that the conventional AdS/CFT correspondence only made sense for very

small deformation, in other words, 3(ν2 − 1)ω2 ≪ m2(ν2 + 3) for scalar mass m. In this

paper, we would like to investigate again these peculiar features more carefully. We find a

disagreement with ref. [11]. More specifically, our computation shows that the low energy

absorption cross section does reduce to the horizon area, and therefore the statement in

ref. [1] still holds. In addition, we obtain the desired greybody factor,

σabs ∝
(2h∗

+ − 1) sinh
(

ω
2TH

)

ωΓ2(2h∗
+)

∣

∣

∣

∣

Γ

(

h∗
+ + i

ω

4πT̃R

)

Γ

(

h∗
+ + i

ω

4πT̃L

)
∣

∣

∣

∣

2

. (1.5)

Here, the effective temperatures are given by [13]

T̃L =
TL

δ
=

ν2 + 3

8πν
; (1.6)

T̃R =
TR

δ
=

(ν2 + 3)(r+ − r−)

8π(ν(r+ + r−) −
√

r+r−(ν2 + 3))
(1.7)

with δ ≡ ν(r+ + r−) −
√

r+r−(ν2 + 3),

1Although it was later shown in a separate paper [12] that using a different coordinate system, absorption

cross section did reduce to horizon area at this critical point.

– 2 –
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and the conformal dimension

h∗
+ =

1

2

(

1 +

√

1 − 12(ν2 − 1)

(ν2 + 3)2
ω2 +

4m2ℓ2

ν2 + 3

)

. (1.8)

We also carry out the computation of massless scalar field in the (warped) AdS/CFT

correspondence and conjecture that in the dual conformal theory living on the (t, u)-plane

there exists a specific operator O∗ with the desired dimension which is responsible for the

peculiar thermal behaviour found from the quasinormal modes.

One evidence supporting this statement is that the greybody factor can be correctly

reproduced by using correlator built from O∗, that is

〈

O∗(t, u)O∗(t
′, u′)

〉

∼ e
±i 2νω

ν2+3
(u−u′)

|t − t′|2h∗
+

. (1.9)

The structure of this paper is outlined as follows: in section 2 we review the derivation of

the differential equation for a massive scalar field probing the AdS3 black hole background.

In section 3, we discuss the subtlety arising from which one of the two limits is taken

first, the massless or the low energy limit. In section 4, we revisit the computation of

the absorption cross section and then obtain the greybody factor in section 5. In section

6, we attempt to derive the same greybody factor from the perspective of the effective

conformal field theory. In section 7, we have discussion on the superradiant modes. For

completeness, we also include some discussion on the warped AdS3/CFT2 correspondence

in the appendix.

2 Scalar field in warped AdS3 black hole

To set up the notation for later computation, we will first repeat the derivation of the

governing differential equation describing a massive scalar field probing the background

described in eq. (1.1) [11, 13, 14]. The Klein-Gordon equation in a curved background is

given by
(

1√−g
∂µ

√−g∂µ − m2

)

Φ = 0. (2.1)

Using separation of variables

Φ(t, r, θ) = e−iωt+iµθφ(r), (2.2)

we obtain the radial equation

d2φ(r)

dr2
+

2r − r+ − r−
(r − r+)(r − r−)

dφ(r)

dr
− (αr2 + βr + γ)

(r − r+)2(r − r−)2
φ = 0, (2.3)

with α = −3ω2(ν2 − 1)

(ν2 + 3)2
+

m2ℓ2

ν2 + 3
,

β = −
ω2(ν2 + 3)(r+ + r−) − 4ν

[

ω2
√

r+r−(ν2 + 3) − 2µω
]

(ν2 + 3)2
+

m2ℓ2(r+ + r−)

ν2 + 3
,

γ = −
4µ
[

µ − ω
√

r+r−(ν2 + 3)
]

(ν2 + 3)2
+

m2ℓ2r+r−
ν2 + 3

.

– 3 –
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It is convenient to introduce the coordinate

z =
r − r+

r − r−
(2.4)

such that the outer horizon is situated at z = 0 and spatial infinity at z = 1. The above

equation then takes the form

z(1 − z)φ′′(z) + (1 − z)φ′(z) +

[

A

z
+

B

1 − z
+ C

]

φ(z) = 0;

with A =
4(ωΩ−1

+ + µ)2

(r+ − r−)2(ν2 + 3)2
,

B = −α,

C = − 4(ωΩ−1
− + µ)2

(r+ − r−)2(ν2 + 3)2
, (2.5)

with prime denoting differentiation with respect to z. Ω+ and Ω− are the angular velocity

at the outer and inner horizon respectively, and

Ω−1
+ = νr+ −

√

r+r−(ν2 + 3)

2
, Ω−1

− = νr− −
√

r+r−(ν2 + 3)

2
. (2.6)

Upon removing the poles in the last term of the above equation through the following ansatz

φ(z) = zp(1 − z)qu(z), (2.7)

with p = −i
√

A, q =
1

2

(

1 −
√

1 + 4α
)

,

we reach a standard form of the hypergeometric differential equation

z(1 − z)u′′(z) + {c − (a + b + 1)z}u′(z) − abu(z) = 0, (2.8)

with a = p + q +
√

C, b = p + q −
√

C, c = 2p + 1.

It is well known that the two independent solutions are given by

u1(z) = 2F1(a, b; c; z), (2.9)

u2(z) = z1−c
2F1(a − c + 1, b − c + 1; 2 − c; z). (2.10)

We comment that these solutions are standard in z coordinate, which agrees with those in

refs. [13, 14]. In ref. [11], the computation was carried out in the r coordinate and a different

set of independent solutions were obtained in equation (3.6) in their paper. Although their

solutions are equivalent to ours up to linear combination, we suspect that their choice could

cause some complication when comparing solutions in the asymptotic region and therefore

makes it difficult to see how the cross section reduces to the horizon area at low energy.

3 Tortoise coordinate and effective potential

It is instructive to see equation (2.3) in the tortoise coordinate r∗, such that

φ∗(r∗) ≡ z(r)φ(r), r∗ = f(r). (3.1)

– 4 –
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f(r) and z(r) are uniquely determined by requiring that eq. (2.3) can be brought into the

following form:

[

− d2

dr∗2
− ω2 + U∗(r∗)

]

φ(r∗) = 0. (3.2)

We observe that in the spatial infinity, the effective potential

lim
r→∞

U∗(r) → (ν2 + 3)(ν2 + 3 + 4mℓ2)

12(ν2 − 1)
. (3.3)

In the case of the BTZ black hole where ν = 1, we always expect an infinite potential

wall in the spatial infinity. For a generic ν 6= 1, however, it becomes a wall of finite

height. Therefore for ω2 < U∗(∞) we may apply the Dirichlet boundary condition and the

wavefunction vanishes in the spatial infinity. In contrast, for ω2 ≥ U∗(∞) we expect the

wavefunction to be nonvanishing there. As we will see later, this new feature may bring

subtlety when both the massless and low energy limits are taken.

4 Revisit absorption cross section

To obtain the absorption cross section, we consider the scattering process that an in-going

flux comes from the spatial infinity and interacts with the black hole. It is then partially

reflected backwards as out-going flux to the spatial infinity and the rest absorbed into the

black hole. One way to achieve this goal is to consider a wavefunction with pure in-going

boundary condition at the horizon and carefully decompose it into the in-going and out-

going parts in the asymptotic region. This determines the form of the wavefunction for the

scalar field:

φ = Cinz
p(1 − z)(a+b−2p)/2

2F1(a, b; c; z), (4.1)

where p is given in eq. (2.7), a, b, c in eq. (2.8) and Cin an arbitrary coefficient. Expanding

this solution at small z, we obtain the asymptotic form near the outer horizon:

φ+ ≃ Cin

(

r − r+

r+ − r−

)−i
2µ+ω



2r+ν−

√
r+r−(ν2+3)

ff

(r+−r−)(ν2+3)

+ · · · (4.2)

Now let us consider the same wavefunction (4.1) near the spatial infinity:

φ∞ ≃ Cin
Γ(c)Γ(c − a − b)

Γ(c − a)Γ(c − b)

(

r

r+ − r−

)− 1
2
+ 1

2

√
1+4α

[

1 +
ab

1 − c + a + b

(

r

r+ − r−

)−1
]

(4.3)

+Cin
Γ(c)Γ(a + b − c)

Γ(a)Γ(b)

(

r

r+−r−

)− 1
2
− 1

2

√
1+4α

[

1+
(c−a)(c−b)

1+c−a−b

(

r

r+−r−

)−1
]

+ · · ·

On the other hand, we may also take the limit r → ∞ in eq (2.3) first and it becomes

φ′′(r) +
2

r
φ′(r) − αr + β

r3
φ(r) = 0. (4.4)

– 5 –
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It has two independent solutions

r
−1
2 I−

√
1+4α

(

2

√

β

r

)

, r
−1
2 I√1+4α

(

2

√

β

r

)

, (4.5)

where the modified Bessel function In(x) has the following expansion at small x:

In(x) ≃ xn

Γ(1 + n)

[

1 +
Γ(1 + n)

22Γ(2 + n)
x2 + · · ·

]

. (4.6)

We then define the in-going and out-going waves as a linear combination of the leading

terms, i.e.

φ∞ ≃ φin
∞(r) + φout

∞ (r),

φin
∞ = Ain

(

r−
1
2
+ 1

2

√
1+4α − iη

π
r−

1
2
− 1

2

√
1+4α

)

,

φout
∞ = Aout

(

r−
1
2
+ 1

2

√
1+4α +

iη

π
r−

1
2
− 1

2

√
1+4α

)

.

(4.7)

Here, η is some undetermined positive coefficient, which we take to be independent of ω.

In comparison with eq. (4.3), we read

Ain =
Cin

2

{

Γ(c)Γ(c − a − b)

Γ(c − a)Γ(c − b)
(r+ − r−)

1
2
(1−

√
1+4α)

+i
π

η

Γ(c)Γ(a + b − c)

Γ(a)Γ(b)
(r+ − r−)

1
2
(1+

√
1+4α)

}

,

Aout =
Cin

2

{

Γ(c)Γ(c − a − b)

Γ(c − a)Γ(c − b)
(r+ − r−)

1
2
(1−

√
1+4α)

−i
π

η

Γ(c)Γ(a + b − c)

Γ(a)Γ(b)
(r+ − r−)

1
2
(1+

√
1+4α)

}

.

(4.8)

We are now ready to compute the in-going flux via the following definition:

F =
2π

i
(r − r+)(r − r−)

[

φ∗(r)φ′(r) − φ(r)φ′∗(r)
]

. (4.9)

The absorption coefficient for the s-wave (µ = 0) reads,

T ≡ F(φ+)

F(φin
∞)

=
ωAH

4η
√

1 + 4α

∣

∣

∣

∣

Cin

Ain

∣

∣

∣

∣

2

. (4.10)

Note that Ain is generally quite complicated for arbitrary mass and angular frequency.

Here, we would like to focus on the low energy limit for massless scalar. Under such con-

ditions, we find that the coefficient of the first term in both curly brackets in eq. (4.8),
Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b) , always reduces to 1 regardless of whether the low energy or the massless limit

is taken first. On the other hand, the coefficient of the second term

Γ(c)Γ(a + b − c)

Γ(a)Γ(b)
→
{

0, if ω → 0 is taken first;
2(Ω−2

+ −Ω−2
−

)

3(r+−r−)2(ν2−1) , if m → 0 is taken first.
(4.11)

– 6 –
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From these results, we can then calculate the cross section for a massless scalar at low energy

σ0
abs ≡ lim

ω→0

T
ω

= AH , (4.12)

if η is chosen properly

η =











1, if ω → 0 is taken first;

1±

s

1−
8π2(Ω−2

+ −Ω−2
−

)

3(ν2−1)

2 , if m → 0 is taken first.

(4.13)

We comment that this subtle difference arises from the distinct behaviour of the wavefunc-

tion in the spatial infinity thanks to the competition between ω2 and U∗(∞). If the low

energy limit is taken first, the wavefunction is vanishing in the spatial infinity. If it is the

other way around then the wavefunction would be nonvanishing there.

5 Greybody factor

In the above computation of the absorption cross section, if one retains the ω dependence

instead of setting it to be identically zero, then one can calculate the greybody factor.

This has been done for the BTZ black hole [8], but it remains a nontrivial check for the

warped AdS3 black hole. Following procedures similar to those taken to obtain the result

in eq. (4.12), we find the relevant part of the absorption cross section for s-wave:2

σabs ∝
1√

1 + 4α

∣

∣

∣

∣

∣

∣

Γ
[

1
2(1 +

√
1 + 4α) − i ω

4πT̃R

]

Γ
[

1
2(1 +

√
1 + 4α) − i ω

4πT̃L

]

Γ
[

1 − i ω
2πTH

]

Γ
[√

1 + 4α
]

∣

∣

∣

∣

∣

∣

2

, (5.1)

where α is given in (2.3) and satisfies the reality condition 1 + 4α ≥ 0. The effective

temperatures are known to be related to the ones in (1.3) by a proper coordinate transfor-

mation [13]:

T̃R =
TR

(
√

r+ −√
r−)2

∣

∣

∣

∣

ν=1

=
1

2π

√
r+ +

√
r−√

r+ −√
r−

,

T̃L =
TL

(
√

r+ −√
r−)2

∣

∣

∣

∣

ν=1

=
1

2π
. (5.2)

First we would like to check that one does recover the results in ref. [8] in the BTZ limit,

i.e. ν → 1. For simplicity, we will restrict our discussion to the massless case. Since α → 0

in this limit, we have

a → −i
ω

4πT̃R

, b → −i
ω

4πT̃L

,

Γ(c)Γ(c − a − b)

Γ(c − a)Γ(c − b)
→ Γ(1 + a + b)Γ(1)

Γ(1 + b)Γ(1 + a)
. (5.3)

2It is straightforward to generalized to the case µ 6= 0 by shifting terms in eq. 5.1 such that ω

4πT̃R

→ ω+µ̃

4πT̃R

and ω
2πTH

→ 1
4π

(ω+µ̃

T̃R

+ ω

T̃L

), where µ̃ ≡ µ

(2ν(r++r
−

)−
√

r+r
−

(ν2+3))
.

– 7 –
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Using the identity

|Γ(1 − ia)|2 =
πa

sinhπa
, (5.4)

we then recover the greybody factor

σabs ∝ ω
eω/TH − 1

(

eω/2T̃L − 1
)(

eω/2T̃R − 1
) . (5.5)

It can be seen that the above derivation still holds for ν > 1, as long as α remains

approaching zero. Replacing the effective temperature by

T̃L =
TL

δ
=

ν2 + 3

8πν
,

T̃R =
TR

δ
=

(ν2 + 3)(r+ − r−)

8π
[

ν(r+ + r−) −
√

r+r−(ν2 + 3)
] ,

with δ ≡ ν(r+ + r−) −
√

r+r−(ν2 + 3), (5.6)

we are able to obtain the same greybody factor as before. We would like to point out

that this observation is consistent with the results obtained by computing the quasinormal

modes in ref. [13].3 We remark that although we mainly focus on the massless limit in

computation of absorption cross section at low energy limit, the greybody factor (5.1) can

also survive for arbitrary large m in the near extremal limit such that r+ − r− → 0 and

ω → 0, but keeping ω
T̃R

finite.4

6 Effective CFT description

In this section, we would like to comment on the greybody factor (5.1) from a viewpoint

of an effective CFT2 on the (τ, u)-plane dual to the warped AdS3 space. Having learnt

from the usual AdS3/CFT2 dictionary, we propose a thermal correlator in the following

form [15]:5

〈

O(x+, x−)O(0, 0)

〉

T

∼ (2h+ − 1)

[

πT̃R

sinh (πT̃Rx+)

]2h+
[

πT̃L

sinh (πT̃Lx−)

]2h+

,

x± ≡ u ± τ,

h+ ≡ 1

2

[

1 +

√

1 − 3(ν2 − 1)

ν2
k2 +

4m2ℓ2

ν2 + 3

]

, (6.1)

3A alternative viewpoint is that TL,R remains intact but instead ω is rescaled to ω̃ = δω This is just a

matter of convention that depends on which coordinate system is chosen. In our convention, the effective

temperature is the same as that of BTZ at ν = 1 limit, nevertheless the convention in [10] gives rise to

correct entropy with conjectured central charges. We thank the referee for bringing up this point.
4This limit should be taken before ν → 1 to be taken, if desired, in order to avoid ambiguity since two

limits do not commute.
5We have normalized the coefficient of correlator to agree with the computation in black hole. In generic,

there could be an ambiguity for the coupling between scalar field and boundary operator, say
R

φ0O.

– 8 –
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where h+ has been derived from various aspects in the appendix. Now we would like

to claim that a particular operator O∗(x+, x−) carrying the conformal dimension h∗
+ ≡

h+

∣

∣

k=k∗
with6

k∗ =
2ν

ν2 + 3
ω, (6.2)

might be responsible for the greybody factor of the warped AdS3 black hole. To see this,

we recall that the absorption cross section is given by

∫

dx+dx−e−iω(x++x−)

〈

O∗(x+, x−)O∗(0, 0)

〉

T

∼
(2h∗

+ − 1) sinh
(

ω
2TH

)

ωΓ2(2h∗
+)

∣

∣

∣

∣

Γ

(

h∗
+ + i

ω

4πT̃R

)

Γ

(

h∗
+ + i

ω

4πT̃L

)
∣

∣

∣

∣

2

. (6.3)

Making use of the identity xΓ(x) = Γ(x + 1) and eq. (5.4), we are able to reproduce the

result in eq. (5.1). To understand the relation (6.2) better, we first recall the coordinates

adopted in the Poincaré frame (A.17), and then we have to introduce the energy ω = 2ω′

for t = τ/2. The relation (6.2) then simply reduces to

k = ±ω′ (6.4)

for ν = 1. This implies that O∗ can be seen as a conventional CFT operator but in a

rotating frame (t, u) with speed

c ≡ ∂u

∂t
=

ω′

k
= ±ν2 + 3

4ν
, (6.5)

which reduces to unit speed for undeformed AdS3. This agrees with a known fact that for

ν = 1 the metric (1.1) reduces to the BTZ metric in a rotating frame.

The key formula (6.3) can also be understood in terms of the correlator (1.9) obtained

in the appendix. We may first rescale7 and rotate the (t, u)-plane into (u+, u−)-plane either

clockwise (right sector) or counterclockwise (left sector):

〈

O∗(u+, u−)O∗(0, 0)

〉L

∼ eiωu+

|u−|2h∗
+

, counterclockwise: (t, u) → (u−, u+);

〈

O∗(u+, u−)O∗(0, 0)

〉R

∼ eiωu−

|u+|2h∗
+

, clockwise: (t, u) → (u+, u−), (6.6)

u± ≡ u ± t/2c.

Assigning temperatures T̃L and T̃R to the left and right sectors respectively, and we then

define the composite thermal correlator as the product of the thermal correlators in the

6This relation is hinted by the coordinate transformation between black hole and warped AdS in the

asymptotic infinity [10]. We thank the referee for pointing this out.
7Before the rotation, we have to rescale u → ν2+3

2ν
u in order to normalize guu to unity in the Poincarè

metric A.17. This is to assure that after coordinate transformation, we have k∗(u±t) → ωu±. The rescaling

of t is relatively not important here.
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two sectors, i.e.
〈〈

O∗(u+, u−)O∗(0, 0)

〉〉

T

∼ (2h+ − 1)eiω(u++u−)

[

πT̃R

sinh(πT̃Ru+)

]2h∗
+
[

πT̃L

sinh (πT̃Lu−)

]2h∗
+

.

(6.7)

This is exactly the integrand in (6.3), and therefore the same result is expected. This

construction can be seen as an effective CFT1 coupled with a free U(1) field. This is

similar to an earlier description of dimensional reduction from AdS3 to AdS2 for the BTZ

black hole with the Chern-Simons and other higher derivative terms [16], which has recently

been extended to the warped AdS3 black hole [17].

7 Superradiant modes

Another unusual feature for the warped AdS3 black hole is the appearance of the superra-

diant modes when

ω2 >
(ν2 + 3)2

12(ν2 − 1)
+

ν2 + 3

3(ν2 − 1)
m2ℓ2, (7.1)

and ν 6= 1. Note that this phenomenon is particular to the warped AdS3 black hole and

would not occur in the BTZ case where ν = 1. In eqs. (4.3) and (4.7), the exponents of

r for the wavefunction in spatial infinity becomes complex. Therefore, both terms of Ain

in eq. (4.8) will contribute to the absorption cross section given by eq. (4.10). From the

CFT side, the existence of the superradiant modes indicates that conformal dimension h±
become complex conjugates and the effective mass of scalar is below the Breitenlohner-

Freedman bound

m2
eff ≡ 4m2

ν2 + 3
− 12(ν2 − 1)ω2

(ν2 + 3)2ℓ2
< − 1

ℓ2
. (7.2)

As a result, the scattering process becomes unstable. Because of the connection in (6.2),

the condition for ω can be translated into a condition on k∗ and condition (7.1) leads to a

bound on angular velocity just as in the case of Kerr black holes.8
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A Warped AdS/CFT correspondence

A.1 Warped AdS calculation

In this section, we demonstrate the dictionary between the spatial warped AdS3 and the

corresponding CFT2. In particular, we would like to derive the conformal weight h± from

8We remark another interesting direction towards CFT calculation of superradiance in Kerr black holes

by a recent paper [19]. The near horizon limit of extremal Kerr black holes (NHEK) also possesses the

same SL(2, R) × U(1) symmetry as in the warped AdS black holes.
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the viewpoints of spacetime isometry and boundary conformal group as well as the two-

point correlator in the Poincarè patch.9 We first consider the gravity side with the following

warped geometry in the global coordinate:

ds2 =
ℓ2

ν2 + 3

[

− cosh2 σdτ2 + dσ2 +
4ν2

ν2 + 3
(du + sinhσdτ)2

]

. (A.1)

Let us now consider the Klein-Gordon equation of a massive scalar field Φ(τ, σ, u) in this

background. Assuming a stationary form Φ = e−iωgτ+ikuφg(σ), the equation becomes

d2φg

dσ2
+ tanh σ

dφg

dσ
+

+

[

ω2
g sech2 σ + 2ωgk sech σ tanh σ −

(

ν2 + 3

4ν2
− tanh2 σ

)

k2 − m2ℓ2

ν2 + 3

]

φg = 0 (A.2)

after separation of variables. It can be brought into a standard form of the hypergeometric

equation

zg(1 − zg)f
′′ +

[

cg − (1 + ag + bg)zg

]

f ′ − agbgf = 0 (A.3)

via the following change of variable

φg = z
(ωg+ik)/2
g (1 − zg)

(ωg−ik)/2f(zg),

zg ≡ 1 + i sinhσ

2
. (A.4)

Here, prime denotes differentiation with respect to zg. ag, bg are determined by

agbg = ωg(ωg + 1) +
3k2(ν2 − 1)

4ν2
− m2ℓ2

ν2 + 3
, ag + bg = 1 + 2ωg,

and cg = 1 + ωg + ik.

On the other hand, the asymptotic behaviour of the two independent solutions to this

equation is given by

φg(zg) → C+zh+
g + C−zh−

g , (A.5)

with h± =
1

2
(1 ± ∆), ∆ ≡

√

1 − 3(ν2 − 1)

ν2
k2 +

4m2ℓ2

ν2 + 3
,

C+ = (−1)ag
Γ(cg)Γ(bg − ag)

Γ(bg)Γ(cg − ag)
, C− = (−1)bg

Γ(ag − bg)

Γ(ag)Γ(cg − bg)
.

For non-integer ∆ < 1, both solutions are renormalizable and either term in eq. (A.5) can

act as a source or fluctuation. For ∆ > 1, only the first term is renormalizable. By setting

C− = 0, we obtained the following quantization condition:

ω = −(n + h+), n = 0, 1, 2, . . . . (A.6)

In the case of ∆ < 1, a similar condition may be achieved

ω = −(n + h−), n = 0, 1, 2, . . . , (A.7)

if we choose the second term to be the renormalizable one.
9Part of discussion in this appendix has overlap with that in [20].
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A.2 Group theory calculation

Now let us turn to the group theory side. Here, the boundary conformal group has been

deformed into SL(2, R)R × U(1)L. Following the notation in [10], the subgroup SL(2, R)R
can be realized by

J̃0 = 2∂τ ,

J̃1 = 2 sin τ tanh σ∂τ − 2 cos τ∂σ +
2 sin τ

cosh σ
∂u,

J̃2 = −2 cos τ tanh σ∂τ − 2 sin τ∂σ − 2 cos τ

cosh σ
∂u, (A.8)

and the additional U(1)L by

J2 = 2∂u. (A.9)

It is convenient to use the following combination:

L̃0 = iJ̃0, L̃+ = −(J̃1 − iJ̃2), L̃− = J̃1 + iJ̃2,

L0 = iJ2, L+ = L− = 0. (A.10)

The Casimirs operators are given by

L2 =
1

2
(L+L− + L−L+) − L2

0, L̃2 =
1

2
(L̃+L̃− + L̃−L̃+) − L̃2

0. (A.11)

We may rewrite eq. (A.5) in terms of the d’Lambertian, which can in turn be expressed in

terms of the left and right Casimirs

− 1

4
(L2 + L̃2)Φ =

m2ℓ2

ν2 + 3
Φ. (A.12)

Solutions satisfying L+Φ+ = 0 and L̃−Φ− = 0 can be found explicitly and

Φ± = e−ih0
±

τ (sech σ)h
0
± , h0

± =
1

2

[

1 ±
√

1 +
4m2ℓ2

ν2 + 3

]

. (A.13)

This agrees with the earlier result of h± for k = 0. To render the desired k-dependence,

we may introduce the untwist generators for the right-moving mode in which the ∂u term

is removed:

J̃1 → J̃1 −
sin τ

cosh σ
J2, J̃2 → J̃2 +

cos τ

cosh σ
J2. (A.14)

This will lead to a natural separation between generators in SL(2, R) and U(1)L, which

can be seen later in the computation of the correlator.

Together with a new solution

Φ± = e−ih±τ+iǫku(sech σ)h± , (A.15)

it can be shown to reproduce h± for

ǫ2 =
3(ν2 − 1)

4ν2
. (A.16)
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A.3 Correlator in Poincarè coordinate

To obtain the correlator of the corresponding operators, it is also worthwhile to work out

the same wavefunction in the Poincarè coordinate. Although a general Poincarè coordinate

valid for all range of σ is not available as far as we know, it is sufficient to know its behaviour

in the limit σ → ∞ where a boundary CFT is conjectured to exist. The local patch can

be achieved by the coordinate transformation x = e−σ and t = τ/2:

ds2 → ℓ2

(ν2 + 3)x2

[

3(ν2 − 1)

ν2 + 3
dt2 + dx2 +

4ν2

ν2 + 3
x2du2 +

8ν2

ν2 + 3
xdtdu

]

. (A.17)

As in ref. [18], we will solve the following equation:

(

1√−g
∂x

√−ggxx∂x + ∂uguu∂u − m2

)

K(x, u) = 0. (A.18)

Using the ansatz K(x, u) = eikuK̃(x), we obtain

K̃(x) ∼ xh+, (A.19)

where we have chosen the operator with conformal weight h+ as the renormalizable mode.

The group transformation of SL(2, R) acting on the (t, x)-plane will map

K(x, u) → K(x, u, t) = eiku

(

x

|x2 − t2|

)h+

. (A.20)

After performing a translation on u ∈ U(1) and t, we define the bulk-to-boundary Green

function as

Kb(x, u, t, u′, t′) ≡ eik(u−u′)

[

x

|x2 − (t − t′)2|

]h+

. (A.21)

Therefore we obtain a bulk field which is determined in the following way

φ(x, t, u) ∼
∫

dt′du′Kb(x, t, u, t′, u′)φ0(t
′, u′). (A.22)

Its derivative in the limit x → 0 is given by

∂

∂x
φ(x, t, u) ∼ xh+−1

∫

dt′ du′ e
ik(u−u′)φ0(t

′, u′)

|t − t′|2h+
. (A.23)

The on-shell action only gets contribution from the boundary term,

Seff = lim
x→0

−1

2

∫

dt du
√−ggxxφ∂xφ ∼ 1

2

∫

dt du dt′ du′ eik(u−u′)

|t − t′|2h+
φ0(t, u)φ0(t

′, u′). (A.24)

From the AdS/CFT dictionary between the effective action in the bulk and the generating

function on the boundary, we have

e−Seff (φ) =

〈

e
R

φ0O
〉

. (A.25)
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As a result, the correlator of the operators is given by

〈

O(t, u)O(t′, u′)

〉

∼ eik(u−u′)

|t − t′|2h+
. (A.26)

We remark that this correlator does not take the usual form expected from the CFT2.

Instead, it is a product of the correlator in CFT1 and the free propagator along the u-

direction, reflecting the breaking of symmetry from SL(2, R)× SL(2, R) to SL(2, R)×U(1)

due to the deformation.

In summary, we have seen that in addition to mass m, spin k is also involved in the

definition of conformal weight h±, thanks to the deformation ν 6= 1. This may be traced

back to the nontrivial fibrated coordinate adopted in (A.1).
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